
HNCcorr
Release 2019

Quico Spaen, Robert Asin-Acha, Dorit S. Hochbaum

Jul 03, 2019

CONTENTS:

1 Quickstart 3
1.1 Movies . 3
1.2 Configuration . 3
1.3 Cell identification . 4

2 API Documentation 5
2.1 Submodules . 5

2.1.1 hnccorr.base module . 5
2.1.2 hnccorr.graph module . 8
2.1.3 hnccorr.movie module . 9
2.1.4 hnccorr.postprocessor module . 13
2.1.5 hnccorr.seeds module . 14
2.1.6 hnccorr.segmentation module . 16
2.1.7 hnccorr.utils module . 18

2.2 Module contents . 20

3 Indices and tables 25

Python Module Index 27

Index 29

i

ii

HNCcorr, Release 2019

This implementation of the HNCcorr algorithm identifies cell bodies in two-photon calcium imaging movies. HNCcorr
is described in detail in our eNeuro paper.

The code consists of modular components that can be configured to your liking.

If you use HNCcorr for academic purposes, please cite the following paper:

Q Spaen, R Asín-Achá, SN Chettih, M Minderer, C Harvey, and DS Hochbaum (2019). HNCcorr: A
novel combinatorial approach for cell identification in calcium-imaging movies. eNeuro, 6(2).

CONTENTS: 1

http://www.eneuro.org/content/6/2/ENEURO.0304-18.2019

HNCcorr, Release 2019

2 CONTENTS:

CHAPTER

ONE

QUICKSTART

1.1 Movies

It all starts from a calcium-imaging movie. If your movie is stored as a numpy array, you can directly construct a
Movie object:

from hnccorr import Movie
from hnccorr.example import load_example_data

movie = Movie(
"Example movie", # Name of the movie
load_example_data() # Downloads sample Neurofinder dataset as a numpy array.

)

If the movie is stored in tiff files, you can construct the Movie object with from_tiff_images(). This method
loads a set of tiff files, each containing one frame, from a folder. The filenames should contain the frame numbers
with zero-padding: 00001.tiff, 00002.tiff, 00003.tiff, etc. With the memmap parameter you can specify whether the
movie should be loaded into memory or a memory-mapped disk file should be created in the same folder. With the
subsample, you can specify how many frames should be subsampled into a single frame. By default, every 10
frames are averaged into a single frame.

Caution: It is important that the tiff filenames are padded with zeros, such that they sort in the correct order.

1.2 Configuration

Before we construct the HNCcorr object, we need to configure the algorithm with an HNCcorrConfig object.
The algorithm will perform better if some of the parameters are adjusted per dataset. For example, in the following
example we adjust the minimum cell size for the postprocessor:

from hnccorr import HNCcorrConfig

config = HNCcorrConfig(postprocessor_min_cell_size=80)

The default value is used for any parameter that is not explicitly specified in the configuration.

The adjustable parameters and their default values are:

• postprocessor_min_cell_size = 40: Lower bound on pixel count of a cell.

• postprocessor_preferred_cell_size = 80: Pixel count of a typical cell.

3

HNCcorr, Release 2019

• postprocessor_max_cell_size = 200: Upper bound on pixel count of a cell.

• patch_size = 31: Size in pixel of each dimension of the patch.

• positive_seed_radius = 0: Radius of the positive seed square / superpixel.

• negative_seed_circle_radius = 10: Radius in pixels of the circle with negative seeds.

• seeder_mask_size = 3: Width in pixels of the region used by the seeder to compute the average correlation
between a pixel and its neighbors.

• seeder_grid_size (int): Size of grid bloc per dimension. Seeder maintains only the best candidate pixel for each
grid block.

• seeder_exclusion_padding = 4: Distance for excluding additional pixels surrounding segmented cells.

• percentage_of_seeds = 0.40: Fraction of candidate seeds to evaluate.

• negative_seed_circle_count = 10: Number of negative seeds.

• gaussian_similarity_alpha = 1: Decay factor in gaussian similarity function.

• sparse_computation_grid_distance = 1 / 35.0 : 1 / grid_resolution. Width of each block in sparse computation.

• sparse_computation_dimension = 3: Dimension of the low-dimensional space in sparse computation.

The parameters at the top of the list are more likely to need adjust than those at the bottom of the list.

1.3 Cell identification

Next, we construct the HNCcorr object from its configuration:

H = HNCcorr.from_config(config)

Note that the config parameter is optional. If no configuration is specified, the default values for HNCcorr are
used.

We can then use HNCcorr to segment the movie and extract the resulting segmentations:

H.segment(movie)

H.segmentations # List of identified cells
H.segmentations_to_list() # Export list of cells (for Neurofinder)

4 Chapter 1. Quickstart

CHAPTER

TWO

API DOCUMENTATION

Here you can find the details of the various HNCcorr components.

This HNCcorr implementation has the following components:

• Candidate - Contains the logic for segmenting a single cell.

• Embedding - Provides the feature vector of each pixel.

• GraphConstructor - Constructs the similarity graph.

• HNC - Solves Hochbaum’s Normalized Cut (HNC) on a given similarity graph.

• HNCcorr - Provides the overal logic for segmenting all cells in a movie.

• Movie - Provides access to the data of a calcium imaging movie.

• Patch - Represents a square subregion of a movie (used for segmenting a cell).

• Positive / negative seed selector – Selects positive or negative seed pixels in a patch.

• Post-processor - Selects the best segmentation (if any) for a cell.

• Seeder - Generates candidate cell locations.

• Segmentation - Represents a candidate segmentation of a cell.

2.1 Submodules

2.1.1 hnccorr.base module

Base components of HNCcorr.

class hnccorr.base.Candidate(center_seed, hnccorr)
Bases: object

Encapsulates the logic for segmenting a single cell candidate / seed.

Variables

• best_segmentation (Segmentation) – Segmentation of a cell’s spatial footprint as
selected by the postprocessor.

• center_seed (tuple) – Seed pixel coordinates.

• clean_segmentations (list[Segmentation]) – List of segmentation after call-
ing clean() on each segmentation.

• segmentations (list[Segmentation]) – List of segmentations returned by HNC.

5

HNCcorr, Release 2019

• _hnccorr (HNCcorr) – HNCcorr object.

__eq__(other)
Compare Candidate object.

__init__(center_seed, hnccorr)
Initialize Candidate object.

segment()
Segment candidate cell and return footprint (if any).

Encapsulates the procedure for segmenting a single cell candidate. It determines the seeds, constructs the
similarity graph, and solves the HNC clustering problem for all values of the trade-off parameter lambda.
The postprocessor selects the best segmentation or determines that no cell is found.

Returns Best segmentation or None if no cell is found.

Return type Segmentation or None

class hnccorr.base.HNCcorr(seeder, postprocessor, segmentor, positive_seed_selector, nega-
tive_seed_selector, graph_constructor, candidate_class, patch_class,
embedding_class, patch_size)

Bases: object

Implementation of the HNCcorr algorithm.

This class specifies all components of the algoritm and defines the procedure for segmenting the movie. How
each candidate seed / location is evaluated is specified in the Candidate class.

References

Q Spaen, R Asín-Achá, SN Chettih, M Minderer, C Harvey, and DS Hochbaum (2019). HNCcorr: A Novel
Combinatorial Approach for Cell Identification in Calcium-Imaging Movies. eNeuro, 6(2).

__init__(seeder, postprocessor, segmentor, positive_seed_selector, negative_seed_selector,
graph_constructor, candidate_class, patch_class, embedding_class, patch_size)

Initalizes HNCcorr object.

classmethod from_config(config=None)
Initializes HNCcorr from an HNCcorrConfig object.

Provides a simple way to initialize an HNCcorr object from a configuration. Default components are used,
and parameters are taken from the input configuration or inferred from the default configuration if not
specified.

Parameters config (HNCcorrConfig) – HNCcorrConfig object with modified configura-
tion. Parameters that are not explicitly specified in the config object are taken from the default
configuration DEFAULT_CONFIGURATION as defined in the hnccorr.config module.

Returns Initialized HNCcorr object as parametrized by the configuration.

Return type HNCcorr

segment(movie)
Applies the HNCcorr algorithm to identify cells in a calcium-imaging movie.

Identifies cells the spatial footprints of cells in a calcium imaging movie. Cells are identified based on
a set of candidate locations identified by the seeder. If a cell is found, the pixels in the spatial footprint
are excluded as seeds for future segmentations. This prevents that a cell is segmented more than once.
Although segmented pixels cannot seed a new segmentation, they may be segmented again.

Identified cells are accessible through the segmentations attribute.

6 Chapter 2. API Documentation

HNCcorr, Release 2019

Returns Reference to itself.

segmentations_to_list()
Exports segmentations to a list of dictionaries.

Each dictionary in the list corresponds to the footprint of a cell. Each dictionary contains the key co-
ordinates containing a list of pixel coordinates. Each pixel coordinate is a tuple with the zero-indexed
coordinates of the pixel. Pixels are indexed like matrix coordinates.

Returns list[dict[tuple]]: List of cell coordinates.

class hnccorr.base.HNCcorrConfig(**entries)
Bases: object

Configuration class for HNCcorr algorithm.

Enables tweaking the parameters of HNCcorr when used with the default components. Configurations are
modular and can be combined using the addition operation.

Each parameter is accessible as an attribute when specified.

Variables

• seeder_mask_size (int) – Width in pixels of the region used by the seeder to compute
the average correlation between a pixel and its neighbors.

• seeder_exclusion_padding (int) – Distance for excluding additional pixels sur-
rounding segmented cells.

• seeder_grid_size (int) – Size of grid bloc per dimension. Seeder maintains only the
best candidate pixel for each grid block.

• percentage_of_seeds (float[0, 1]) – Fraction of candidate seeds to evaluate.

• postprocessor_min_cell_size (int) – Lower bound on pixel count of a cell.

• postprocessor_max_cell_size (int) – Upper bound on pixel count of a cell.

• postprocessor_preferred_cell_size (int) – Pixel count of a typical cell.

• positive_seed_radius (int) – Radius of the positive seed square / superpixel.

• negative_seed_circle_radius (int) – Radius in pixels of the circle with negative
seeds.

• negative_seed_circle_count (int) – Number of negative seeds.

• gaussian_similarity_alpha (alpha) – Decay factor in gaussian similarity func-
tion.

• sparse_computation_grid_distance (float) – 1 / grid_resolution. Width of
each block in sparse computation.

• sparse_computation_dimension (int) – Dimension of the low-dimensional space
in sparse computation.

• patch_size (int) – Size in pixel of each dimension of the patch.

• _entries (dict) – Dict with parameter keys and values. Each parameter value (when
defined) is also accessible as an attribute.

__add__(other)
Combines two configurations and returns a new one.

If parameters are defined in both configurations, then other takes precedence.

Parameters other (HNCcorrConfig) – Another configuration object.

2.1. Submodules 7

HNCcorr, Release 2019

Returns Configuration with combined parameter sets.

Return type HNCcorrConfig

Raises TypeError – When other is not an instance of HNCcorrConfig.

__init__(**entries)
Initializes HNCcorrConfig object.

2.1.2 hnccorr.graph module

HNCcorr components related to the similarity graph.

class hnccorr.graph.CorrelationEmbedding(patch)
Bases: object

Computes correlation feature vector for each pixel.

Embedding provides a representation of a pixel in terms of feature vector. The feature vector for the Correla-
tionEmbedding is a vector of pairwise correlations to each (or some) pixel in the patch.

If the correlation is not defined due to a pixel with zero variance, then the corelation is set to zero.

Variables embedding (np.array) – (D, N_1, N_2, ..) array of pairwise correlations, where D
is the dimension of the embedding and N_1, N_2, .. are the pixel shape of the patch.

__init__(patch)
Initializes a CorrelationEmbedding object.

See class description for details.

Parameters patch (Patch) – Subregion of movie for which the correlation embedding is
computed.

get_vector(pixel)
Retrieve feature vector of pixel.

Parameters pixel (tuple) – Coordinate of pixel.

Returns Feature vector of pixel.

Return type np.array

class hnccorr.graph.GraphConstructor(edge_selector, weight_function)
Bases: object

Graph constructor over a set of pixels.

Constructs a similarity graph over the set of pixels in a patch. Edges are selected by an edge_selector and the
similarity weight associated with each edge is computed with the weight_function. Edge weights are stored
under the attribute weight.

A directed graph is used for efficiency. That is, arcs (i,j) and (j,i) are used to represent edge [i,j].

Variables

• _edge_selector (EdgeSelector) – Object that constructs the edge set of the graph.

• _weight_function (function) – Function that computes the edge weight between
two pixels. The function should take as input two 1-dimensional numpy arrays, representing
the feature vectors of the two pixels. The function should return a float between 0 and 1.

__init__(edge_selector, weight_function)
Initializes a graph constructor.

8 Chapter 2. API Documentation

HNCcorr, Release 2019

construct(patch, embedding)
Constructs similarity graph for a given patch.

See class description.

Parameters

• patch (Patch) – Defines subregion and pixel set for the graph.

• embedding (CorrelationEmbedding) – Provides feature vectors associated with
each pixel in the patch.

Returns Similarity graph over pixels in patch.

Return type nx.DiGraph

class hnccorr.graph.SparseComputationEmbeddingWrapper(dim_low, distance, dimen-
sion_reducer=None)

Bases: object

Wrapper for SparseComputation that accepts an embedding.

Variables _sc (SparseComputation) – SparseComputation object.

__init__(dim_low, distance, dimension_reducer=None)
Initializes a SparseComputationEmbeddingWrapper instance.

Parameters

• dim_low (int) – Dimension of the low-dimensional space in sparse computation.

• distance (float) – 1 / grid_resolution. Defines the size of the grid blocks in sparse
computation.

• dimension_reducer (DimReducer) – Provides dimension reduction for sparse
computation. By default, approximate principle component analysis is used.

Returns SparseComputationEmbeddingWrapper

select_edges(embedding)
Selects relevant pairwise similarities with sparse computation.

Determines the set of relevant pairwise similarities based on the sparse computation algorithm. See sparse
computation for details. Pixel coordinates are with respect to the index of the embedding.

Parameters embedding (CorrelationEmbedding) – Embedding of pixels into feature
vectors.

Returns List of relevant pixel pairs.

Return type list(tuple)

hnccorr.graph.exponential_distance_decay(feature_vec1, feature_vec2, alpha)
Computes exp(- alpha / n || x_1 - x_2 ||^2_2) for x_1, x_2 in R^n.

2.1.3 hnccorr.movie module

Components for calcium-imaging movies in HNCcorr.

class hnccorr.movie.Movie(name, data)
Bases: object

Calcium imaging movie class.

Data is stored in an in-memory numpy array. Class supports both 2- and 3- dimensional movies.

2.1. Submodules 9

HNCcorr, Release 2019

Variables

• name (str) – Name of the experiment.

• _data (np.array) – Fluorescence data. Array has size T x N1 x N2. T is the number of
frame (num_frames), N1 and N2 are the number of pixels in the first and second dimension
respectively.

• _data_size (tuple) – Size of array _data.

__getitem__(key)
Provides direct access to the movie data.

Movie is stored in array with shape (T, N_1, N_2, . . .), where T is the number of frames in the movie.
N_1, N_2, . . . are the number of pixels in the first dimension, second dimension, etc.

Parameters key (tuple) – Valid index for a numpy array.

Returns np.array

static _get_tiff_images_and_size(image_dir, num_images)
Provides a sorted list of images and computes the required array size.

Data is assumed to be stored in 16-bit unsigned integers. Frame numbers are assumed to be padded with
zeros: 00000, 00001, 00002, etc. This is required such that Python sorts the images correctly. Frame
numbers can start from 0, 1, or any other number. Files must have the extension .tiff.

Parameters

• image_dir (str) – Path of image folder.

• num_images (int) – Number of images in the folder.

Returns Tuple of the list of images and the array size.

Return type tuple[List[Str], tuple]

static _read_images(images, output_array, subsampler)
Loads images and copies them into the provided array.

Parameters

• images (list[Str]) – Sorted list image paths.

• output_array (np.array like) – T x N_1 x N_2 array-like object into which
images should be loaded. T must equal the number of images in images. Each image
should be of size N_1 x N_2.

• subsampler –

Returns The input array array.

Return type np.array like

extract_valid_pixels(pixels)
Returns subset of pixels that are valid coordinates for the movie.

classmethod from_tiff_images(name, image_dir, num_images, memmap=False, subsam-
ple=10)

Loads tiff images into a numpy array.

Data is assumed to be stored in 16-bit unsigned integers. Frame numbers are assumed to be padded with
zeros: 00000, 00001, 00002, etc. This is required such that Python sorts the images correctly. Frame
numbers can start from 0, 1, or any other number. Files must have the extension .tiff.

If memmap is True, the data is not loaded into memory bot a memory mapped file on disk is used. The file
is named $name.npy and is placed in the image_dir folder.

10 Chapter 2. API Documentation

HNCcorr, Release 2019

Parameters

• name (str) – Movie name.

• image_dir (str) – Path of image folder.

• num_images (int) – Number of images in the folder.

• memmap (bool) – If True, a memory-mapped file is used. (Default: False)

• subsample (int) – Number of frames to average into a single frame.

Returns Movie created from image files.

Return type Movie

is_valid_pixel_coordinate(coordinate)
Checks if coordinate is a coordinate for a pixel in the movie.

property num_dimensions
Dimension of the movie (excludes time dimension).

property num_frames
Number of frames in the movie.

property num_pixels
Number of pixels in the movie.

property pixel_shape
Resolution of the movie in pixels.

class hnccorr.movie.Patch(movie, center_seed, patch_size)
Bases: object

Square subregion of Movie.

Patch limits the data used for the segmentation of a potential cell. Given a center seed pixel, Patch defines a
square subregion centered on the seed pixel with width patch_size. If the square extends outside the movie
boundaries, then the subregion is shifted such that it stays within the movie boundaries.

The patch also provides an alternative coordinate system with respect to the top left pixel of the patch. This
pixel is the zero coordinate for the patch coordinate system. The coordinate offset is the coordinate of the top
left pixel in the movie coordinate system.

Variables

• _center_seed (tuple) – Seed pixel that marks the potential cell. The pixel is repre-
sented as a tuple of coordinates. The coordinates are relative to the movie. The top left pixel
of the movie represents zero.

• _coordinate_offset (tuple) – Movie coordinates of the pixel that represents the
zero coordinate in the Patch object. Similar to the Movie, pixels in the Patch are indexed
from the top left corner.

• _data (np.array) – Subset of the Movie data. Only data for the patch is stored.

• _movie (Movie) – Movie for which the Patch object is a subregion.

• _num_dimensions (int) – Dimension of the patch. It matches the dimension of the
movie.

• _patch_size (int) – length of the patch in each dimension. Must be an odd number.

__getitem__(key)
Access data for pixels in the patch. Indexed in patch coordinates.

2.1. Submodules 11

HNCcorr, Release 2019

__init__(movie, center_seed, patch_size)
Initializes Patch object.

_compute_coordinate_offset()
Computes the coordinate offset of the patch.

Confirms that the patch falls within the movie boundaries and shifts the patch if necessary. The center seed
pixel may not be in the center of the patch if a shift is necessary.

_movie_indices()
Computes the indices of the movie that correspond to the patch.

For a patch with top left pixel (5, 5) and bottom right pixel (9, 9), this method returns (:, 5:10,
5:10) which can be used to acccess the data corresponding to the patch in the movie.

enumerate_pixels()
Returns the movie coordinates of the pixels in the patch.

property num_frames
Number of frames in the Movie.

property pixel_shape
Shape of the patch in pixels. Does not not included the time dimension.

to_movie_coordinate(patch_coordinate)
Converts a movie coordinate into a patch coordinate.

Parameters patch_coordinate (tuple) – Coordinates of a pixel in patch coordinate sys-
tem.

Returns Coordinate of pixel in movie coordinate system.

Return type tuple

to_patch_coordinate(movie_coordinate)
Converts a movie coordinate into a patch coordinate.

Parameters movie_coordinate (tuple) – Coordinates of a pixel in movie coordinate sys-
tem.

Returns Coordinate of pixel in patch coordinate system.

Return type tuple

class hnccorr.movie.Subsampler(movie_shape, subsample_frequency, buffer_size=10)
Bases: object

Subsampler for averaging frames.

Averages subsample_frequency into a single frame. Stores averaged frames in a buffer and writes buffer to an
output array.

Variables

• _buffer (np.array) – (b, N_1, N_2) array where the frame averages are compiled.

• _buffer_frame_count – (b,) array with the number of frames used in each averaged
frame.

• _buffer_size (int) – Number of averaged frames to store in buffer. Short: b. Default
is 10.

• _buffer_start_index (int) – Index of averaged movie corresponding with first
frame in the buffer.

• _current_index (int) – Index of current frame in buffer.

12 Chapter 2. API Documentation

HNCcorr, Release 2019

• _movie_shape (int) – Shape of input movie.

• _num_effective_frames (int) – Number of frames in the averaged movie.

• _subsample_frequency (int) – Number of frames to average into a single frame.

__init__(movie_shape, subsample_frequency, buffer_size=10)
Initializes a subsampler object.

add_frame(frame)
Adds frame to average.

Frames should be provided in order of appearance in the movie.

Parameters frame (np.array) – (N_1, N_2) array with pixel intensities.

Returns None

Raises ValueError – If buffer is full.

advance_buffer()
Empties buffer and advances the buffer indices for new frames

property buffer
Provides access to data in buffer. Corrects last buffer for movie length.

property buffer_full
True if buffer is full.

property buffer_indices
Indices in average movie corresponding to current buffer

property output_shape
Shape of average movie array.

2.1.4 hnccorr.postprocessor module

Postprocesser component for selecting the best segmentation in HNCcorr.

class hnccorr.postprocessor.SizePostprocessor(min_size, max_size, pref_size)
Bases: object

Selects the best segmentation based on the number of selected pixels.

Discards all segmentations that contain more pixels than _max_size or less pixels then _min_size. If no
segmentations remains, no cell was found and None is returned. Otherwise the segmentation is returned that
minimizes |sqrt(x) - sqrt(_pref_size)| where x is the number of pixels in the segmentation.

Variables

• _min_size (int) – Lower bound for the cell size in pixels.

• _max_size (int) – Upper bound for the cell size in pixels.

• _pref_size (int) – Preferred cell size in pixels.

__init__(min_size, max_size, pref_size)
Initializes a SizePostprocessor object.

_filter(segmentations)
Returns a list of segmentations with size between min_size and max_size.

2.1. Submodules 13

HNCcorr, Release 2019

select(segmentations)
Selects the best segmentation based on the number of selected pixels.

See class description for details.

Parameters segmentations (List[Segmentation]) – List of candidate segmentations.

Returns Best segmentation or None if all are discarded.

Return type Segmentation or None

2.1.5 hnccorr.seeds module

Seed related components of HNCcorr.

class hnccorr.seeds.LocalCorrelationSeeder(neighborhood_size, keep_fraction, padding,
grid_size)

Bases: object

Provide seeds based on the correlation of pixels to their local neighborhood.

Seed pixels are selected based on the average correlation of the pixel to its local neighborhood.For each block
of grid_size by grid_size pixels, the pixel with the highest average local correlation is selected. The remaining
pixels in each block are discarded. From the remaining pixels, a fraction of _seed_fraction pixels, those with
the highest average local correlation, are kept and attempted for segmentation.

The local neighborhood of each pixel consist of the pixels in a square of width _neighborhood_size centered on
the pixels. Pixel coordinates outside the boundary of the movie are ignored.

Variables

• _current_index (int) – Index of next seed in _seeds to return.

• _excluded_pixels (set) – Set of pixel coordinates to excluded as future seeds.

• _grid_size (int) – Number of pixels per dimension in a block.

• _keep_fraction (float) – Percentage of candidate seed pixels to attempt for segmen-
tation. All other candidate seed pixels are discarded.

• _movie (Movie) – Movie to segment.

• _neighborhood_size (int) – Width in pixels of the local neighborhood of a pixel.

• _padding (int) – L-infinity distance for determining which pixels should be padded to
the exclusion set in exclude_pixels().

• _seeds (list[tuple]) – List of candidate seed coordinates to return.

__init__(neighborhood_size, keep_fraction, padding, grid_size)
Initializes a LocalCorrelationSeeder object.

_compute_average_local_correlation(pixel, valid_neighbors)
Compute average correlation between pixel and neighbors.

_select_best_per_grid_block(scores)
Selects pixel with highest score in a block of grid_size pixels per dim.

exclude_pixels(pixels)
Excludes pixels from being returned by next() method.

All pixels within in the set pixels as well as pixels that are within an L- infinity distance of _padding from
any excluded pixel are excluded as seeds.

14 Chapter 2. API Documentation

HNCcorr, Release 2019

Method enables exclusion of pixels in previously segmented cells from serving as new seeds. This may
help to prevent repeated segmentation of the cell.

Parameters pixels (set) – Set of pixel coordinates to exclude.

Returns None

next()
Provides next seed pixel for segmentation.

Returns the movie coordinates of the next available seed pixel for segmentation. Seed pixels that have
previously been excluded will be ignored. Returns None when all seeds are exhausted.

Returns Coordinates of next seed pixel. None if no seeds remaining.

Return type tuple or None

reset()
Reinitialize the sequence of seed pixels and empties _excluded_seeds.

select_seeds(movie)
Identifies candidate seeds in movie.

Initializes list of candidate seeds in the movie. See class description for details. Seeds can be accessed via
the next() method.

Parameters movie (Movie) – Movie object to segment.

Returns None

class hnccorr.seeds.NegativeSeedSelector(radius, count)
Bases: object

Selects negative seed pixels uniformly from a circle around center seed pixel.

Selects _count pixels from a circle centered on the center seed pixel with radius _radius. The selected pixels are
spread uniformly over the circle. Non-integer pixel indices are rounded to the closest (integer) pixel. Currently
only 2-dimensional movies are supported.

Variables

• _radius (float) – L2 distance to center seed.

• _count (int) – Number of negative seed pixels to select.

select(center_seed, movie)
Selects negative seed pixels.

Parameters

• center_seed (tuple) – Center seed pixels.

• movie (Movie) – Movie for segmentation.

Returns Set of negative seed pixels. Each pixel is denoted by a tuple.

Return type set

class hnccorr.seeds.PositiveSeedSelector(max_distance)
Bases: object

Selects positive seed pixels in a square centered on center_seed.

Selects all pixels in a square centered on center_seed as positive seeds. A pixel is selected if it is within a
Chebyshev distance (L-Inf) of _max_distance from the center seed pixel.

Variables _max_distance (int) – Maximum L-Inf distance allowed.

2.1. Submodules 15

HNCcorr, Release 2019

select(center_seed, movie)
Selects positive seeds.

Parameters

• center_seed (tuple) – Center seed pixel.

• movie (Movie) – Movie for segmentation.

Returns Set of positive seed pixels. Each pixel is denoted by a tuple.

Return type set

2.1.6 hnccorr.segmentation module

HNC and segmentation related components in HNCcorr.

class hnccorr.segmentation.HncParametricWrapper(lower_bound, upper_bound)
Bases: object

Wrapper for solving the Hochbaum Normalized Cut (HNC) problem on a graph.

Given an undirected graph 𝐺 = (𝑉,𝐸) with edge weights 𝑤𝑖𝑗 ≥ 0 for [𝑖, 𝑗] ∈ 𝐸, the linearized HNC problem
is defined as:

min
∅⊂𝑆⊂𝑉

∑︁
[𝑖,𝑗]∈𝐸,
𝑖∈𝑆,

𝑗∈𝑉 ∖𝑆

𝑤𝑖𝑗 − 𝜆
∑︁
𝑖∈𝑆

𝑑𝑖,

where d_i the degree of node 𝑖 ∈ 𝑉 and 𝜆 ≥ 0 provides the trade-off between the two objective terms.

See closure package for solution method.

__init__(lower_bound, upper_bound)
Initializes HncParametricWrapper object.

static _construct_segmentations(source_sets, breakpoints)
Constructs a list of segmentations from output HNC.

Each source set and corresponding lambda upper bound is replaced with a Segmentation object where the
selection matches the source set and the weight parameter matches the upper bound of the lambda range.

Parameters

• source_sets (list[set]) – List of source sets for each lambda range.

• breakpoints (list[float]) – List of upper bounds on the lambda range for which
the corresponding source set is optimal.

Returns List of segmentations.

Return type list[Segmentation]

solve(graph, pos_seeds, neg_seeds)
Solves an instance of the HNC problem for all values of lambda.

Solves the HNC clustering problem on graph for all values of lambda simultaneously. See class description
for a definition of HNC.

Parameters

• graph (nx.Graph) – Directed similarity graph with non-negative edge weights. Edge
[i,j] is represented by two directed arcs (i,j) and (j,i). Edge weights must be defined via the
attribute weight.

16 Chapter 2. API Documentation

HNCcorr, Release 2019

• pos_seeds (set) – Set of nodes in graph that must be part of the cluster.

• neg_seeds (set) – Set of nodes in graph that must be part of the complement.

Returns List of optimal clusters for each lambda range.

Return type list[Segmentation]

Caution: Class modifies graph for performance. Pass a copy to prevent any issues.

class hnccorr.segmentation.Segmentation(selection, weight)
Bases: object

A set of pixels identified by HNC as a potential cell footprint.

Variables

• selection (set) – Pixels in the spatial footprint. Each pixel is represented as a tuple.

• weight (float) – Upper bound on the lambda coefficient for which this segmentation is
optimal.

__eq__(other)
Compares two Segmentation objects.

__init__(selection, weight)
Initializes a Segmentation object.

clean(positive_seeds, movie_pixel_shape)
Cleans Segmentation by selecting a connected component and filling holes.

The Segmentation is decomposed into connected components by considering horizontal or vertical adja-
cent pixels as neighbors. The connected component with the most positive seeds is selected. Any holes in
the selected component are added to the selection.

Parameters

• positive_seeds (set) – Pixels that are contained in the spatial footprint. Each pixel
is represented by a tuple.

• movie_pixel_shape (tuple) – Pixel resolution of the movie.

Returns A new Segmentation object with the same weight.

Return type Segmentation

fill_holes(movie_pixel_shape)
Fills holes in the selection.

Parameters movie_pixel_shape (tuple) – Pixel resolution of the movie.

Returns A new Segmentation object with the same weight.

Return type Segmentation

select_max_seed_component(positive_seeds)
Selects the connected component of selection that contains the most seeds.

The Segmentation is decomposed into connected components by considering horizontal or vertical adja-
cent pixels as neighbors. The connected component with the most positive seeds is selected.

Parameters positive_seeds (set) – Pixels that are contained in the spatial footprint. Each
pixel is represented by a tuple.

Returns A new Segmentation object with the same weight.

2.1. Submodules 17

HNCcorr, Release 2019

Return type Segmentation

2.1.7 hnccorr.utils module

Helper functions for HNCcorr.

hnccorr.utils.add_offset_set_coordinates(iterable, offset)
Adds a fixed offset to all pixel coordinates in a set.

Parameters

• coordinates (set) – Set of pixel coordinates. Each pixel coordinate is a tuple.

• offset (tuple) – Offset to add to each pixel coordinate. Tuple should be of the same
length as the tuples in coordinates.

Returns Set of updated coordinates.

Return type set

Example

>>> add_offset_set_coordinates({(5, 2), (4, 7)}, (2, 2))
{(7, 4), (6, 9)}

hnccorr.utils.add_offset_to_coordinate(coordinate, offset)
Offsets pixel coordinate by another coordinate.

Parameters

• coordinate (tuple) – Pixel coordinate to offset.

• offset (tuple) – Offset to add to coordinate. Must be of the same length.

Example

>>> add_offset_to_coordinate((5, 3, 4), (1, -1, 3))
(6, 2, 7)

hnccorr.utils.add_time_index(index)
Inserts a full slice as the first dimension of an index for e.g. numpy.

Parameters index (tuple) – Index for e.g. numpy array.

Returns New index with additional dimension.

Return type tuple

Example

>>> add_time_index((5, :3))
(:, 5, :3)

hnccorr.utils.eight_neighborhood(num_dims, max_radius)
Returns all coordinates within a given L-infinity distance of zero.

Includes zero coordinate itself.

18 Chapter 2. API Documentation

HNCcorr, Release 2019

Parameters

• num_dims (int) – Number of dimensions for the coordinates.

• max_radius (int) – Largest L-infinity distance allowed.

Returns Set of pixel coordinates.

Return type set

Example

>>> eight_neighborhood(1, 1)
[(-1,), (0,), (1,)]
>>> eight_neighborhood(2, 1)
[

(-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 0),
(0, 1), (1, -1), (1, 0), (1, 1)

]

hnccorr.utils.four_neighborhood(num_dims)
Returns all neighboring pixels of zero that differ in at most one coordinate.

Includes zero coordinate itself.

Parameters num_dims (int) – Number of dimensions for the coordinates.

Returns Set of pixel coordinates.

Return type set

Example

>>> four_neighborhood(1)
[(-1,), (0,), (1,)]
>>> eight_neighborhood(2)
[(-1, 0), (0, -1), (0, 0), (0, 1), (1, 0)]

hnccorr.utils.generate_pixels(shape)
Enumerate all pixel coordinates for a movie/patch.

Parameters shape (tuple) – Shape of movie. Number of pixels in each dimension.

Returns Iterates over all pixels.

Return type Iterator

Example

>>> generate_pixels((2,2))
[(0, 0), (0, 1), (1, 0), (1, 1)]

hnccorr.utils.list_images(folder)
Lists and sorts tiff images in a folder.

Images are sorted in ascending order based on filename.

2.1. Submodules 19

HNCcorr, Release 2019

Caution: Filenames are sorted as strings. Note that 200.tiff is sorted before 5.tiff. Pad image
filenames with zeros to prevent this: 005.tiff.

Parameters folder – folder containing tiff image files.

Returns Sorted list of paths of tiff files in folder.

Return type list

2.2 Module contents

class hnccorr.base.HNCcorr(seeder, postprocessor, segmentor, positive_seed_selector, nega-
tive_seed_selector, graph_constructor, candidate_class, patch_class,
embedding_class, patch_size)

Bases: object

Implementation of the HNCcorr algorithm.

This class specifies all components of the algoritm and defines the procedure for segmenting the movie. How
each candidate seed / location is evaluated is specified in the Candidate class.

References

Q Spaen, R Asín-Achá, SN Chettih, M Minderer, C Harvey, and DS Hochbaum (2019). HNCcorr: A Novel
Combinatorial Approach for Cell Identification in Calcium-Imaging Movies. eNeuro, 6(2).

__init__(seeder, postprocessor, segmentor, positive_seed_selector, negative_seed_selector,
graph_constructor, candidate_class, patch_class, embedding_class, patch_size)

Initalizes HNCcorr object.

classmethod from_config(config=None)
Initializes HNCcorr from an HNCcorrConfig object.

Provides a simple way to initialize an HNCcorr object from a configuration. Default components are used,
and parameters are taken from the input configuration or inferred from the default configuration if not
specified.

Parameters config (HNCcorrConfig) – HNCcorrConfig object with modified configura-
tion. Parameters that are not explicitly specified in the config object are taken from the default
configuration DEFAULT_CONFIGURATION as defined in the hnccorr.config module.

Returns Initialized HNCcorr object as parametrized by the configuration.

Return type HNCcorr

segment(movie)
Applies the HNCcorr algorithm to identify cells in a calcium-imaging movie.

Identifies cells the spatial footprints of cells in a calcium imaging movie. Cells are identified based on
a set of candidate locations identified by the seeder. If a cell is found, the pixels in the spatial footprint
are excluded as seeds for future segmentations. This prevents that a cell is segmented more than once.
Although segmented pixels cannot seed a new segmentation, they may be segmented again.

Identified cells are accessible through the segmentations attribute.

Returns Reference to itself.

20 Chapter 2. API Documentation

HNCcorr, Release 2019

segmentations_to_list()
Exports segmentations to a list of dictionaries.

Each dictionary in the list corresponds to the footprint of a cell. Each dictionary contains the key co-
ordinates containing a list of pixel coordinates. Each pixel coordinate is a tuple with the zero-indexed
coordinates of the pixel. Pixels are indexed like matrix coordinates.

Returns list[dict[tuple]]: List of cell coordinates.

class hnccorr.base.HNCcorrConfig(**entries)
Bases: object

Configuration class for HNCcorr algorithm.

Enables tweaking the parameters of HNCcorr when used with the default components. Configurations are
modular and can be combined using the addition operation.

Each parameter is accessible as an attribute when specified.

Variables

• seeder_mask_size (int) – Width in pixels of the region used by the seeder to compute
the average correlation between a pixel and its neighbors.

• seeder_exclusion_padding (int) – Distance for excluding additional pixels sur-
rounding segmented cells.

• seeder_grid_size (int) – Size of grid bloc per dimension. Seeder maintains only the
best candidate pixel for each grid block.

• percentage_of_seeds (float[0, 1]) – Fraction of candidate seeds to evaluate.

• postprocessor_min_cell_size (int) – Lower bound on pixel count of a cell.

• postprocessor_max_cell_size (int) – Upper bound on pixel count of a cell.

• postprocessor_preferred_cell_size (int) – Pixel count of a typical cell.

• positive_seed_radius (int) – Radius of the positive seed square / superpixel.

• negative_seed_circle_radius (int) – Radius in pixels of the circle with negative
seeds.

• negative_seed_circle_count (int) – Number of negative seeds.

• gaussian_similarity_alpha (alpha) – Decay factor in gaussian similarity func-
tion.

• sparse_computation_grid_distance (float) – 1 / grid_resolution. Width of
each block in sparse computation.

• sparse_computation_dimension (int) – Dimension of the low-dimensional space
in sparse computation.

• patch_size (int) – Size in pixel of each dimension of the patch.

• _entries (dict) – Dict with parameter keys and values. Each parameter value (when
defined) is also accessible as an attribute.

__add__(other)
Combines two configurations and returns a new one.

If parameters are defined in both configurations, then other takes precedence.

Parameters other (HNCcorrConfig) – Another configuration object.

Returns Configuration with combined parameter sets.

2.2. Module contents 21

HNCcorr, Release 2019

Return type HNCcorrConfig

Raises TypeError – When other is not an instance of HNCcorrConfig.

__init__(**entries)
Initializes HNCcorrConfig object.

class hnccorr.movie.Movie(name, data)
Bases: object

Calcium imaging movie class.

Data is stored in an in-memory numpy array. Class supports both 2- and 3- dimensional movies.

Variables

• name (str) – Name of the experiment.

• _data (np.array) – Fluorescence data. Array has size T x N1 x N2. T is the number of
frame (num_frames), N1 and N2 are the number of pixels in the first and second dimension
respectively.

• _data_size (tuple) – Size of array _data.

__getitem__(key)
Provides direct access to the movie data.

Movie is stored in array with shape (T, N_1, N_2, . . .), where T is the number of frames in the movie.
N_1, N_2, . . . are the number of pixels in the first dimension, second dimension, etc.

Parameters key (tuple) – Valid index for a numpy array.

Returns np.array

static _get_tiff_images_and_size(image_dir, num_images)
Provides a sorted list of images and computes the required array size.

Data is assumed to be stored in 16-bit unsigned integers. Frame numbers are assumed to be padded with
zeros: 00000, 00001, 00002, etc. This is required such that Python sorts the images correctly. Frame
numbers can start from 0, 1, or any other number. Files must have the extension .tiff.

Parameters

• image_dir (str) – Path of image folder.

• num_images (int) – Number of images in the folder.

Returns Tuple of the list of images and the array size.

Return type tuple[List[Str], tuple]

static _read_images(images, output_array, subsampler)
Loads images and copies them into the provided array.

Parameters

• images (list[Str]) – Sorted list image paths.

• output_array (np.array like) – T x N_1 x N_2 array-like object into which
images should be loaded. T must equal the number of images in images. Each image
should be of size N_1 x N_2.

• subsampler –

Returns The input array array.

Return type np.array like

22 Chapter 2. API Documentation

HNCcorr, Release 2019

extract_valid_pixels(pixels)
Returns subset of pixels that are valid coordinates for the movie.

classmethod from_tiff_images(name, image_dir, num_images, memmap=False, subsam-
ple=10)

Loads tiff images into a numpy array.

Data is assumed to be stored in 16-bit unsigned integers. Frame numbers are assumed to be padded with
zeros: 00000, 00001, 00002, etc. This is required such that Python sorts the images correctly. Frame
numbers can start from 0, 1, or any other number. Files must have the extension .tiff.

If memmap is True, the data is not loaded into memory bot a memory mapped file on disk is used. The file
is named $name.npy and is placed in the image_dir folder.

Parameters

• name (str) – Movie name.

• image_dir (str) – Path of image folder.

• num_images (int) – Number of images in the folder.

• memmap (bool) – If True, a memory-mapped file is used. (Default: False)

• subsample (int) – Number of frames to average into a single frame.

Returns Movie created from image files.

Return type Movie

is_valid_pixel_coordinate(coordinate)
Checks if coordinate is a coordinate for a pixel in the movie.

property num_dimensions
Dimension of the movie (excludes time dimension).

property num_frames
Number of frames in the movie.

property num_pixels
Number of pixels in the movie.

property pixel_shape
Resolution of the movie in pixels.

2.2. Module contents 23

HNCcorr, Release 2019

24 Chapter 2. API Documentation

CHAPTER

THREE

INDICES AND TABLES

• modindex

• search

25

HNCcorr, Release 2019

26 Chapter 3. Indices and tables

PYTHON MODULE INDEX

h
hnccorr.base, 5
hnccorr.graph, 8
hnccorr.movie, 9
hnccorr.postprocessor, 13
hnccorr.seeds, 14
hnccorr.segmentation, 16
hnccorr.utils, 18

27

HNCcorr, Release 2019

28 Python Module Index

INDEX

Symbols
__add__() (hnccorr.base.HNCcorrConfig method), 7
__eq__() (hnccorr.base.Candidate method), 6
__eq__() (hnccorr.segmentation.Segmentation

method), 17
__getitem__() (hnccorr.movie.Movie method), 10
__getitem__() (hnccorr.movie.Patch method), 11
__init__() (hnccorr.base.Candidate method), 6
__init__() (hnccorr.base.HNCcorr method), 6
__init__() (hnccorr.base.HNCcorrConfig method), 8
__init__() (hnccorr.graph.CorrelationEmbedding

method), 8
__init__() (hnccorr.graph.GraphConstructor

method), 8
__init__() (hnccorr.graph.SparseComputationEmbeddingWrapper

method), 9
__init__() (hnccorr.movie.Patch method), 11
__init__() (hnccorr.movie.Subsampler method), 13
__init__() (hnccorr.postprocessor.SizePostprocessor

method), 13
__init__() (hnccorr.seeds.LocalCorrelationSeeder

method), 14
__init__() (hnccorr.segmentation.HncParametricWrapper

method), 16
__init__() (hnccorr.segmentation.Segmentation

method), 17
_compute_average_local_correlation()

(hnccorr.seeds.LocalCorrelationSeeder
method), 14

_compute_coordinate_offset() (hnc-
corr.movie.Patch method), 12

_construct_segmentations() (hnc-
corr.segmentation.HncParametricWrapper
static method), 16

_filter() (hnccorr.postprocessor.SizePostprocessor
method), 13

_get_tiff_images_and_size() (hnc-
corr.movie.Movie static method), 10

_movie_indices() (hnccorr.movie.Patch method),
12

_read_images() (hnccorr.movie.Movie static
method), 10

_select_best_per_grid_block() (hnc-
corr.seeds.LocalCorrelationSeeder method),
14

A
add_frame() (hnccorr.movie.Subsampler method), 13
add_offset_set_coordinates() (in module

hnccorr.utils), 18
add_offset_to_coordinate() (in module hnc-

corr.utils), 18
add_time_index() (in module hnccorr.utils), 18
advance_buffer() (hnccorr.movie.Subsampler

method), 13

B
buffer() (hnccorr.movie.Subsampler property), 13
buffer_full() (hnccorr.movie.Subsampler prop-

erty), 13
buffer_indices() (hnccorr.movie.Subsampler

property), 13

C
Candidate (class in hnccorr.base), 5
clean() (hnccorr.segmentation.Segmentation method),

17
construct() (hnccorr.graph.GraphConstructor

method), 8
CorrelationEmbedding (class in hnccorr.graph), 8

E
eight_neighborhood() (in module hnccorr.utils),

18
enumerate_pixels() (hnccorr.movie.Patch

method), 12
exclude_pixels() (hnc-

corr.seeds.LocalCorrelationSeeder method),
14

exponential_distance_decay() (in module
hnccorr.graph), 9

extract_valid_pixels() (hnccorr.movie.Movie
method), 10

29

HNCcorr, Release 2019

F
fill_holes() (hnccorr.segmentation.Segmentation

method), 17
four_neighborhood() (in module hnccorr.utils), 19
from_config() (hnccorr.base.HNCcorr class

method), 6
from_tiff_images() (hnccorr.movie.Movie class

method), 10

G
generate_pixels() (in module hnccorr.utils), 19
get_vector() (hnccorr.graph.CorrelationEmbedding

method), 8
GraphConstructor (class in hnccorr.graph), 8

H
HNCcorr (class in hnccorr.base), 6
hnccorr.base (module), 5
hnccorr.graph (module), 8
hnccorr.movie (module), 9
hnccorr.postprocessor (module), 13
hnccorr.seeds (module), 14
hnccorr.segmentation (module), 16
hnccorr.utils (module), 18
HNCcorrConfig (class in hnccorr.base), 7
HncParametricWrapper (class in hnc-

corr.segmentation), 16

I
is_valid_pixel_coordinate() (hnc-

corr.movie.Movie method), 11

L
list_images() (in module hnccorr.utils), 19
LocalCorrelationSeeder (class in hnccorr.seeds),

14

M
Movie (class in hnccorr.movie), 9

N
NegativeSeedSelector (class in hnccorr.seeds), 15
next() (hnccorr.seeds.LocalCorrelationSeeder

method), 15
num_dimensions() (hnccorr.movie.Movie property),

11
num_frames() (hnccorr.movie.Movie property), 11
num_frames() (hnccorr.movie.Patch property), 12
num_pixels() (hnccorr.movie.Movie property), 11

O
output_shape() (hnccorr.movie.Subsampler prop-

erty), 13

P
Patch (class in hnccorr.movie), 11
pixel_shape() (hnccorr.movie.Movie property), 11
pixel_shape() (hnccorr.movie.Patch property), 12
PositiveSeedSelector (class in hnccorr.seeds), 15

R
reset() (hnccorr.seeds.LocalCorrelationSeeder

method), 15

S
segment() (hnccorr.base.Candidate method), 6
segment() (hnccorr.base.HNCcorr method), 6
Segmentation (class in hnccorr.segmentation), 17
segmentations_to_list() (hnc-

corr.base.HNCcorr method), 7
select() (hnccorr.postprocessor.SizePostprocessor

method), 13
select() (hnccorr.seeds.NegativeSeedSelector

method), 15
select() (hnccorr.seeds.PositiveSeedSelector

method), 15
select_edges() (hnc-

corr.graph.SparseComputationEmbeddingWrapper
method), 9

select_max_seed_component() (hnc-
corr.segmentation.Segmentation method),
17

select_seeds() (hnc-
corr.seeds.LocalCorrelationSeeder method),
15

SizePostprocessor (class in hnc-
corr.postprocessor), 13

solve() (hnccorr.segmentation.HncParametricWrapper
method), 16

SparseComputationEmbeddingWrapper (class
in hnccorr.graph), 9

Subsampler (class in hnccorr.movie), 12

T
to_movie_coordinate() (hnccorr.movie.Patch

method), 12
to_patch_coordinate() (hnccorr.movie.Patch

method), 12

30 Index

	Quickstart
	Movies
	Configuration
	Cell identification

	API Documentation
	Submodules
	hnccorr.base module
	hnccorr.graph module
	hnccorr.movie module
	hnccorr.postprocessor module
	hnccorr.seeds module
	hnccorr.segmentation module
	hnccorr.utils module

	Module contents

	Indices and tables
	Python Module Index
	Index

